✨ Create a Glowing Animated Heart with WebGL & Shaders (Beginner-Friendly)

glowing-heart-animation-webgl-fragment-shader

Want to wow visitors with an eye-catching animation using just HTML, JavaScript, and WebGL? In this tutorial, you'll learn how to build a glowing, animated neon heart using WebGL shaders — no libraries required.

Perfect for anyone curious about graphics programming, this project is a beautiful entry point into the world of GPU-powered visuals and fragment shaders.


🧱 Step 1: Basic HTML Structure with a Fullscreen Canvas

We'll begin by setting up a blank HTML page that renders a full-browser canvas for WebGL to draw on.

<!DOCTYPE html>
<html>
    <head>
        <title>Neon Effect Heart - Tech Talker 360</title>

        <style>
            @charset "utf-8";
            /* CSS Document */

            * {
                margin: 0;
                padding: 0;
                box-sizing: border-box;
                overflow: hidden;
            }
        </style>
    </head>

    <body>
        <canvas id="canvas" width="2500" height="1000"></canvas>
    </body>
</html>

This single line is your display surface. The <canvas> element gives you a drawable area in the browser where WebGL will output the animation.

Inside the script, we later adjust its size to match the window dynamically.


🧠 Step 2: Initialize WebGL and Handle Resizing

The following script grabs the canvas and prepares WebGL:

var canvas = document.getElementById("canvas");

canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

var gl = canvas.getContext("webgl");
if (!gl) {
    console.error("Unable to initialize WebGL.");
}

This initializes the WebGL rendering context and ensures it scales with the browser window. If WebGL isn't available, the user gets an error message in the console.


💡 Step 3: Set Up Shader Source Code

Shaders are tiny programs that run on your GPU. You’ll need a vertex shader to map geometry and a fragment shader to handle pixel-level rendering.

Here's the vertex shader:

var time = 0.0;

var vertexSource = `
attribute vec2 position;
void main() {
    gl_Position = vec4(position, 0.0, 1.0);
}
`;

This code tells WebGL how to position the vertices of our shape on screen — we’re drawing a rectangle that fills the screen.


Next, the fragment shader does the heavy lifting:

var fragmentSource = `
    precision highp float;

    uniform float width;
    uniform float height;
    vec2 resolution = vec2(width, height);

    uniform float time;

    #define POINT_COUNT 8

    vec2 points[POINT_COUNT];
    const float speed = -0.5;
    const float len = 0.25;
    float intensity = 1.3;
    float radius = 0.008;

    float sdBezier(vec2 pos, vec2 A, vec2 B, vec2 C){    
        vec2 a = B - A;
        vec2 b = A - 2.0*B + C;
        vec2 c = a * 2.0;
        vec2 d = A - pos;

        float kk = 1.0 / dot(b,b);
        float kx = kk * dot(a,b);
        float ky = kk * (2.0*dot(a,a)+dot(d,b)) / 3.0;
        float kz = kk * dot(d,a);      

        float res = 0.0;

        float p = ky - kx*kx;
        float p3 = p*p*p;
        float q = kx*(2.0*kx*kx - 3.0*ky) + kz;
        float h = q*q + 4.0*p3;

        if (h >= 0.0) { 
            h = sqrt(h);
            vec2 x = (vec2(h, -h) - q) / 2.0;
            vec2 uv = sign(x)*pow(abs(x), vec2(1.0/3.0));
            float t = uv.x + uv.y - kx;
            t = clamp( t, 0.0, 1.0 );

            vec2 qos = d + (c + b*t)*t;
            res = length(qos);
        } else {
            float z = sqrt(-p);
            float v = acos( q/(p*z*2.0) ) / 3.0;
            float m = cos(v);
            float n = sin(v)*1.732050808;
            vec3 t = vec3(m + m, -n - m, n - m) * z - kx;
            t = clamp( t, 0.0, 1.0 );

            vec2 qos = d + (c + b*t.x)*t.x;
            float dis = dot(qos,qos);

            res = dis;

            qos = d + (c + b*t.y)*t.y;
            dis = dot(qos,qos);
            res = min(res,dis);

            qos = d + (c + b*t.z)*t.z;
            dis = dot(qos,qos);
            res = min(res,dis);

            res = sqrt( res );
        }

        return res;
    }

    vec2 getHeartPosition(float t) {
        return vec2(16.0 * sin(t) * sin(t) * sin(t),
                            -(13.0 * cos(t) - 5.0 * cos(2.0*t)
                            - 2.0 * cos(3.0*t) - cos(4.0*t)));
    }

    float getGlow(float dist, float radius, float intensity) {
        return pow(radius/dist, intensity);
    }

    float getSegment(float t, vec2 pos, float offset, float scale) {
        for (int i = 0; i < POINT_COUNT; i++) {
            points[i] = getHeartPosition(offset + float(i)*len + fract(speed * t) * 6.28);
        }

        vec2 c = (points[0] + points[1]) / 2.0;
        vec2 c_prev;
        float dist = 10000.0;

        for (int i = 0; i < POINT_COUNT-1; i++) {
            c_prev = c;
            c = (points[i] + points[i+1]) / 2.0;
            dist = min(dist, sdBezier(pos, scale * c_prev, scale * points[i], scale * c));
        }

        return max(0.0, dist);
    }

    void main(){
        vec2 uv = gl_FragCoord.xy/resolution.xy;
        float widthHeightRatio = resolution.x/resolution.y;
        vec2 centre = vec2(0.5, 0.5);
        vec2 pos = centre - uv;
        pos.y /= widthHeightRatio;
    
        pos.y += 0.02;
        float scale = 0.000015 * height;

        float t = time;

        float dist = getSegment(t, pos, 0.0, scale);
        float glow = getGlow(dist, radius, intensity);

        vec3 col = vec3(0.0);

        col += 10.0*vec3(smoothstep(0.003, 0.001, dist));
    
        col += glow * vec3(1.0,0.05,0.3);

        dist = getSegment(t, pos, 3.4, scale);
        glow = getGlow(dist, radius, intensity);

        col += 10.0*vec3(smoothstep(0.003, 0.001, dist));
    
        col += glow * vec3(0.1,0.4,1.0);

        col = 1.0 - exp(-col);

        col = pow(col, vec3(0.4545));

        gl_FragColor = vec4(col,1.0);
    }
`;

✅ Your provided fragment shader handles everything from heart shape generation to glow blending. No edits made!


Once we’ve defined our shaders, we need to compile and attach them to a program:

window.addEventListener("resize", onWindowResize, false);

function onWindowResize() {
    canvas.width = window.innerWidth;
    canvas.height = window.innerHeight;
    gl.viewport(0, 0, canvas.width, canvas.height);
    gl.uniform1f(widthHandle, window.innerWidth);
    gl.uniform1f(heightHandle, window.innerHeight);
}

function compileShader(shaderSource, shaderType) {
    var shader = gl.createShader(shaderType);
    gl.shaderSource(shader, shaderSource);
    gl.compileShader(shader);
    if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
        throw "Shader compile failed with: " + gl.getShaderInfoLog(shader);
    }
    return shader;
}

function getAttribLocation(program, name) {
    var attributeLocation = gl.getAttribLocation(program, name);
    if (attributeLocation === -1) {
        throw "Cannot find attribute " + name + ".";
    }
    return attributeLocation;
}

function getUniformLocation(program, name) {
    var attributeLocation = gl.getUniformLocation(program, name);
    if (attributeLocation === -1) {
        throw "Cannot find uniform " + name + ".";
    }
    return attributeLocation;
}

var vertexShader = compileShader(vertexSource, gl.VERTEX_SHADER);
var fragmentShader = compileShader(fragmentSource, gl.FRAGMENT_SHADER);

This function helps us compile either type of shader and throw helpful errors if something goes wrong.


🧱 Step 5: Set Up a Fullscreen Rectangle

We now define four vertices to cover the full canvas, forming two triangles (a strip):

var program = gl.createProgram();
gl.attachShader(program, vertexShader);
gl.attachShader(program, fragmentShader);
gl.linkProgram(program);

gl.useProgram(program);

var vertexData = new Float32Array([-1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0, -1.0]);

This array forms a square in normalized device coordinates (ranging from -1 to +1) — effectively filling the entire screen.


🔌 Step 6: Send Data to the GPU

We need to tell WebGL how to use that data for our position attribute:

var vertexDataBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexDataBuffer);
gl.bufferData(gl.ARRAY_BUFFER, vertexData, gl.STATIC_DRAW);

var positionHandle = getAttribLocation(program, "position");

gl.enableVertexAttribArray(positionHandle);
gl.vertexAttribPointer(positionHandle, 2, gl.FLOAT, false, 2 * 4, 0);

This binds the vertex data to the buffer, then links it to the position attribute in the vertex shader.


🌀 Step 7: Animate with Uniforms

The final step is setting uniforms (constants sent from JS to the shader), and creating a render loop:

var timeHandle = getUniformLocation(program, "time");
var widthHandle = getUniformLocation(program, "width");
var heightHandle = getUniformLocation(program, "height");

gl.uniform1f(widthHandle, window.innerWidth);
gl.uniform1f(heightHandle, window.innerHeight);

var lastFrame = Date.now();
var thisFrame;

function draw() {
    thisFrame = Date.now();
    time += (thisFrame - lastFrame) / 1000;
    lastFrame = thisFrame;

    gl.uniform1f(timeHandle, time);
    gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

    requestAnimationFrame(draw);
}
draw();

This keeps updating time, which is used by the shader to animate the heart's motion and glowing effect.


👋 Final Note

To see this effect in action, combine all these snippets in a single HTML file (as provided in your original code) and open it in your browser. It’ll produce a mesmerizing glowing heart, animated in real-time via GPU.

You can tweak glow intensity, colors, and even the heart formula to experiment!


🧑‍💻 Best Practices & Tips

  • Use requestAnimationFrame for smooth and efficient animations.
  • Separate shader code into separate files or multiline strings for readability.
  • Always check for WebGL support (canvas.getContext('webgl') might fail).
  • Use meaningful variable names (positionHandletimeHandle, etc.) to keep your code clear.

📈 SEO & Performance Impact

WebGL animations like this are GPU-accelerated and efficient for modern browsers, but should be used thoughtfully — overly complex shaders can affect battery and performance. Optimized animations improve user engagement and visual appeal, especially for landing pages or portfolio sites.


✅ Conclusion

And there you have it — a dazzling neon heart animation built with raw WebGL and shaders! This project is not only fun to create, but also a great intro to GPU graphics, custom fragment shaders, and interactive visual effects.

Let us know what you build next — maybe your own logo, text, or effects using similar principles?


🔗 Stay Connected with Tech Talker 360

Post a Comment

0 Comments